
Journal of Computational Physics 213 (2006) 174–183

www.elsevier.com/locate/jcp
A least-squares finite element method for the
Navier–Stokes equations

P. Bolton *, R.W. Thatcher

School of Mathematics, University of Manchester, P.O. Box 88, Sackville Street, Manchester M60 1QD, United Kingdom

Received 3 February 2005; received in revised form 28 July 2005; accepted 9 August 2005
Available online 23 September 2005
Abstract

The Navier–Stokes equations for flow in a plane are reformulated as a first-order system in terms of stress and stream
functions. Solutions of this system are obtained by the least-squares finite element method. A feature of this approach is
that the linearised system gives rise to a symmetric and positive-definite linear algebra problem at each Newton iteration.
Care over handling the incompressibility term is needed to ensure good results are obtained.
� 2005 Elsevier Inc. All rights reserved.
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1. A first-order reformulation of the Navier–Stokes equations

1.1. The Navier–Stokes equations

The Navier–Stokes system of equations for an incompressible fluid in steady flow and on which no body
forces act is
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Re
r2~uþ~u � r~uþrp ¼ 0 in X; ð1Þ

r �~u ¼ 0 in X. ð2Þ

The enclosed flow boundary conditions for (1) and (2) are
~u ¼~g on C; ð3ÞZ
X
p dX ¼ 0. ð4Þ
ThequantityRe is theReynolds number, whichwedefine as being the inverse of the viscosity parameter m. This set
of equations is non-linear, and the non-linear term comes to dominate for high values of the Reynolds number.
Much effort has gone into obtaining finite-element solutions of these equations, see for example [11–13,18,23].
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1.2. The first-order least-squares finite element method

The first-order least-squares solution of a system of m equations in n unknowns holding over a region X is
found by minimising the least-squares functional
Xm

i¼1

kLiU � fik20;
where Li is a first-order differential operator and U 2 [H1(X)]n satisfies appropriate boundary conditions. We
look for continuous, piecewise differentiable finite element approximations Uh to the minimum U in a finite-
dimensional subspace of [H1(X)]n. Hence in obtaining solutions of the Navier–Stokes equations (1) and (2) it is
necessary to recast the second-order system as a nonlinear first-order one. A number of such formulations
have been considered in the literature. One example of such a formulation is the velocity–vorticity–pressure
formulation, see [4]. Solutions of a backward facing step problem using this formulation can be found in
[14] and the driven cavity problem is solved in [14–17]. Another example is the semi-linear velocity–vorticity–
head formulation, see [2,3,16].

1.3. A first-order reformulation of the Navier–Stokes equations in terms of stress and stream functions

For a fluid of velocity ~u ¼ ðu1; u2Þ in a Cartesian coordinate frame with axes x and y
r~u ¼
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Then (1) can be written explicitly as
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We introduce R, the Reynolds stress tensor [19], defined as
R ¼ u21 u1u2
u1u2 u22

� �
.

This matrix has a divergence with two components
r � R ¼
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For incompressible fluids, which satisfy Eq. (2), this can be simplified to
r � R ¼
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Let d denote the deformation tensor
d ¼ 1
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Then introduce a tensor rR such that
rR ¼ �pI þ 2md � R; ð5Þ

where I is the identity matrix. Given that (1) and (2) hold then
r � rR ¼ 0.
We introduce a stress function / defined so that
rR ¼
/yy �/xy

�/xy /xx

 !
and a stream function w defined as
u1 ¼ wy ;

u2 ¼ �wx.
We can write (5) in terms of / and w as
/yy ¼ �p þ 2mwxy � w2
y ;

� /xy ¼ mðwyy � wxxÞ þ wxwy ;

/xx ¼ �p � 2mwxy � w2
x .
We eliminate the pressure p and make the substitutions
U 1 ¼ /x; U 2 ¼ /y ; U 3 ¼ wx; U 4 ¼ wy
to obtain
� oU 1

ox
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¼ 4m
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þ U 2

3 � U 2
4;
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þ 2U 3U 4.
So the Navier–Stokes equations (1) and (2) can be written in first-order form as
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Appropriate boundary conditions for this system of equations are as for the equivalent system for the Stokes
equations, see [6,21]. In terms of these variables the enclosed flow conditions (3) are
U 3 ¼ �g2ðx; yÞ; U 4 ¼ g1ðx; yÞ on C; ð10Þ

where~g ¼ ðg1; g2Þ. Given these conditions then the solution of the system (6)–(9) is unique provided that lin-
ear constraints Ki(U) = 0, i = 1, . . . , Nc are also specified. We fix both U1 and U2 at a point and either U1 at a
second point with a different x coordinate or U2 at a second point with a different y coordinate, see [21].

Before moving on to develop a least-squares functional for the set of equations (6)–(9), we shall first line-
arise them.

A number of linearisation techniques have been employed in the finite element literature, as highlighted by
Jiang in [15]. The one we shall use is Newton�s linearisation method, see for example [2,3,15,17]. This is an
iterative technique, with an updated solution UT = (U1, U2, U3, U4) to be obtained from an estimate or
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previous iterate Û
T ¼ ðÛ 1; Û 2; Û 3; Û 4Þ. Applying Newton�s linearisation method to the system (6)–(9) we

obtain the equations
� oU 1
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4 . ð14Þ
We write this system of equations as L*U = F*, with L* a linear operator, U as above and F �T ¼ ðf �
1 ; f

�
2 ;

f �
3 ; f

�
4 Þ. The corresponding least-squares functional is
X4
i¼1

kL�
i U � F �

i k
2
0 ð15Þ
with X the domain on which Eqs. (11)–(14) hold. We introduce a test space ~V with elements V such that
VT = (V1, V2, V3, V4), namely
~V ¼ fV 2 ½H 1ðXÞ�4jV 3 ¼ 0; V 4 ¼ 0 on C; KiðV Þ ¼ 0; i ¼ 1; . . . ;N cg.
We seek the function U, where UT = (U1, U2, U3, U4), from an appropriate trial space ~U , namely
~U ¼ U 2 ½H 1ðXÞ�4jU 3 ¼ �g2; U 4 ¼ g1 on C; KiðUÞ ¼ 0; i ¼ 1; . . . ;N c

n o
;

such that the functional in Eq. (15) is a minimum. Given that the function U minimises the functional in Eq.
(15) then
lim
t!0

d
R
XðL

�U þ tL�V � F �Þ2dX
dt

¼ 0 8V 2 ~V
and therefore
Z
X
L�UL�V dX ¼

Z
X
L�VF � dX 8V 2 ~V .
In obtaining finite element solutions we work with a finite-dimensional subset ~Uh of the trial space ~U and a
finite-dimensional subset ~V h of the test space ~V . The finite element solution Uh satisfies the relation
Z

X
L�UhL�V h dX ¼

Z
X
L�V hF � dX 8V h 2 ~V h.
In [5,6], we showed that mass is not conserved well in the solutions of the equivalent system for the Stokes
equations for incompressible flow with enclosed flow boundary conditions. We saw in [5,6] that much more
mass is conserved if we weight the terms in the least-squares functional corresponding to Eqs. (8) and (9).
Although conservation of mass is enforced by Eq. (9), Eq. (8) is of the same form and it seems natural to
weight this equation by the same factor. We note that loss of mass is observed in least-squares solutions of
other first-order reformulations of the Stokes and Navier–Stokes equations and weighting of the mass conser-
vation term or terms in these reformulations has been considered elsewhere, see for instance [8].

We have found that the terms corresponding to Eqs. (8) and (9) in the least-squares functional which arises
from the Navier–Stokes system (6)–(9) also have to be weighted. Here, we present solutions obtained by mini-
mising both the unweighted functional
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In this paper, we set W = 103 which is large enough so that there is relatively little flow lost but not so large
that the linear algebra systems arising in the finite element solution are ill-conditioned, see [5]. Experience in
solving the corresponding Stokes system suggests that the quality of solutions when weighting is employed is
highly dependent on the form of the grid, see [6]. In approximating the Navier–Stokes equations, we use so-
called ‘‘Union Jack’’ grids or grids which are topologically equivalent, in preference to other grids like those
composed of unidirectional triangles. It is known that Union Jack grids possess special properties which do
not necessarily hold for other forms of grid, see [20]. In particular they satisfy the grid decomposition prop-
erty, see [1,9,10].

As a particular finite-dimensional space, we chose the set of piecewise continuous linear functions defined
on a triangulation of X. In [7], convergence rates of least squares solutions of the first-order reformulation of
the Stokes equations in terms of the velocity, vorticity and pressure and with enclosed flow boundary condi-
tions are analysed. It is shown there that if linear elements are used to approximate all the variables then con-
vergence is suboptimal in the vorticity and pressure. But the equivalent system to Eqs. (6)–(9) for the Stokes
equations is the one in terms of the stress and stream functions presented in [21]. In [22], convergence rates of
solutions of this system are analysed. Optimal convergence in H1, and in L2 given suitably smooth analytical
solutions, is proved for a number of different boundary conditions including enclosed flow (10).

Local and global stiffness matrices and right-hand side vectors can be generated and assembled in the usual
way to give a linear system for the unknown nodal values. As they arise from a least-squares functional, the
linear systems are symmetric and positive-definite at each iteration.

The stream function can be recovered from the solution in the velocity variables by minimising the
functional
Ss ¼ wx � U 3k k20 þ kwy � U 4k20.
2. Simulation of flow over a backward facing step

Our region is [�2, 0] · [�1, 0] [ [0, 6] · [�1, 1] as illustrated in Fig. 1.
On the inlet AB, we apply the boundary conditions
U 3 ¼ 0; U 4 ¼ �y 1þ yð Þ;

whilst on the outlet CD, we apply the conditions
U 3 ¼ 0; U 4 ¼ 0:125 1� y2
� �

.

On the walls BC, DE and AO, we apply the no-slip boundary conditions
U 3 ¼ 0; U 4 ¼ 0.
The linear constraints are that U1 = 0 and U2 = 0 at the point B and that U2 = 0 at the point D. The viscosity
parameter m is set equal to 10�2.

We see from Table 1 that there is substantial loss of mass in the solution of the unweighted SN functional.
For instance at ny = 4 over 86% of the mass is lost between the inlet and the line x = 0 through the re-entrant
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Fig. 1. Planar backward facing step grid at ny = 2.
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corner. Even at ny = 32 almost 34% of the mass is lost between these two lines. Much less mass is lost in the
solution of the weighted SN, W functional, see Table 2. In this case at ny = 32 virtually all of the mass is con-
served between the inlet and the line x = 0.

Figs. 2 and 3 show the contours of the stream functions obtained from the unweighted and weighted solu-
tions respectively. Fig. 2 demonstrates graphically the loss of fluid in the solution, particularly in the area near
the re-entrant corner. The solution shown in Fig. 3 is much more acceptable. There is some recirculation in the
weighted solution close to the corner labelled E in Fig. 1. This is indicated in Fig. 3 by the closed contour lines
in this portion of the region.

3. Flow over a semi-cylindrical restriction

We approximate flow through a channel [0, 10] · [0, 2.5] with a semi-circular restriction of radius unity, as
illustrated in Fig. 4. The region is
Table
Axial fl

ny

4
8
16
32

Table
Axial fl

ny

4
8
16
32
fðx; yÞ j x 2 ½0; 10�; y 2 ½0; 2:5�; ðx� 3Þ2 þ y2 P 1g.

Our elements are triangular and the approximations are piecewise linear. The grid for the region with param-
eter ng = 1 is shown in Fig. 4 and its first refinement, for which ng = 2, is shown in Fig. 5. On the inlet line AF
and the outlet line DE the boundary conditions are
U 3 ¼ 0; U 4 ¼ 0:16y 2:5� yð Þ.

The fluid is stationary on the walls AB, CD and EF as well as on the restriction itself so that
U 3 ¼ 0; U 4 ¼ 0.
1
ow in the solution of the SN formulation

Axial flow

x = �2 x = 0 x = 3

0.15625 0.02080 0.05201
0.16406 0.04288 0.07733
0.16602 0.07463 0.10480
0.16650 0.11067 0.13061

2
ow in the solution of the SN, W formulation, W = 103

Axial flow

x = �2 x = 0 x = 3

0.15625 0.14755 0.15503
0.16406 0.16171 0.16359
0.16602 0.16536 0.16585
0.16650 0.16632 0.16645



Fig. 2. Stream function contours, SN formulation (ny = 16).

Fig. 3. Stream function contours, SN, W formulation (ny = 16).
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Fig. 4. Mesh at ng = 1.

Fig. 5. Mesh at ng = 2.
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The viscosity parameter m is set equal to 10�2. In this case, we find that we require three linear constraints. We
set U1 equal to zero at A and U1 and U2 as zero at E.

Just as in the solutions of the backward facing step problem there is a great deal of flow lost in the solution
of the unweighted functional, see Table 3.



Table 3
Axial flow in the solution of the SN formulation

ng Axial flow

AF PQ YZ DE

4 0.41594 0.12013 0.18685 0.41594
8 0.41649 0.17901 0.23873 0.41649
16 0.41662 0.25224 0.29755 0.41662

Table 4
Axial flow in the solution of the SN, W formulation, W = 103

ng Axial flow

AF PQ YZ DE

4 0.41594 0.38965 0.39807 0.41594
8 0.41649 0.41003 0.41212 0.41649
16 0.41662 0.41515 0.41563 0.41662

Fig. 6. Stream function contours, SN formulation (ng = 4).

Fig. 7. Stream function contours, SN, W formulation (ng = 4).

Fig. 8. Recirculation in the solution of the SN, W formulation, at ng = 8.
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At ng = 4 even in the solution of the weighted functional 6.3% of the flow is lost between the inlet line AF
and PQ, see Table 4. It is only in solutions of the SN, W functional on the finer grids that the flow is conserved.

The stream functions for the unweighted and weighted solutions at ng = 4 are shown in Figs. 6 and 7,
respectively. The diverging contours in Fig. 6 indicate a loss of flow, whilst the plot in Fig. 7 is closer to what
we might expect for the true stream function. At this level of refinement there is no separation or recirculation
visible even in the solution of the SN, W functional. There is some recirculation in the solution of the SN, W

functional at ng = 8 and ng = 16 in the region to the immediate right of the cylinder, close to the corner
labelled C in Fig. 4. A quiver plot of the velocity field in the solution on the grid ng = 8 in this portion of
the region is shown in Fig. 8.

4. Conclusion

The least-squares finite element method offers much promise because it gives rise to symmetric and positive-
definite systems for which fast direct and indirect methods of solution exist. Although much work has been
done, efficient solution techniques for standard Galerkin formulations of mixed methods for the Navier–Stokes
equations are still being developed. In the formulation presented here the non-linear terms are algebraic and
hence the system is semi-linear. This is similar to the formulation in terms of the velocity, the vorticity and
the total pressure or head discussed for instance in [3]. We note that for these semi-linear systems the classifi-
cation is the same as for the corresponding linear Stokes-equivalent systems so that the equations are elliptic for
all values of the Reynolds number. Furthermore boundary conditions which are appropriate for the Stokes-
equivalent system will also be appropriate for the system equivalent to the Navier–Stokes equations. The anal-
ysis of semi-linear systems may also be simpler. Other first-order formulations of the Navier–Stokes equations
used in obtaining least-squares solutions do not possess this advantageous property.

We have shown here that apparent problems with lack of mass conservation in solutions of incompressible
flow obtained using this formulation can be overcome by modifying the technique in a simple way, namely
weighting of particular terms in the least-squares functional. This modication preserves the symmetric posi-
tive-definiteness of the linear systems that occur when using this method. Finally we note that the formulation
can also be extended into three dimensions, see [5], although this idea is still being developed.
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